Search results for " Distributed processing"
showing 2 items of 2 documents
The Stability-Plasticity Dilemma: Investigating the Continuum from Catastrophic Forgetting to Age-Limited Learning Effects
2013
The stability-plasticity dilemma is a well-know constraint for artificial and biological neural systems. The basic idea is that learning in a parallel and distributed system requires plasticity for the integration of new knowledge, but also stability in order to prevent the forgetting of previous knowledge. Too much plasticity will result in previously encoded data being constantly forgotten, whereas too much stability will impede the efficient coding of this data at the level of the synapses. However, for the most part, neural computation has addressed the problems related to excessive plasticity or excessive stability as two different fields in the literature.
Modeling and Verification of Symbolic Distributed Applications Through an Intelligent Monitoring Agent
2022
Wireless Sensor Networks (WSNs) represent a key component in emerging distributed computing paradigms such as IoT, Ambient Intelligence, and Smart Cities. In these contexts, the difficulty of testing, verifying, and monitoring applications in their intended scenarios ranges from challenging to impractical. Current simulators can only be used to investigate correctness at source code level and with limited accuracy. This paper proposes a system and a methodology to model and verify symbolic distributed applications running on WSNs. The approach allows to complement the distributed application code at a high level of abstraction in order to test and reprogram it, directly, on deployed network…